Computing F-symbols for the center of a fusion category

Ramona Wolf
University of Siegen
EQUAL talk, Jan 22nd 2025

Joint work with

Daniel Barter, Jacob Bridgeman, Alexander Hahn

Why F-symbols 2

* Finite set of simple objects:

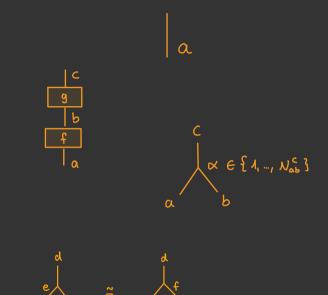
* Morphisms $f: a \rightarrow b$, $g: b \rightarrow c$ with composition

* Fusion rules:
$$a \otimes b = \mathcal{L} N_{ab}^{c} c$$

Ly Fusion spaces: V_{ab}^{c} with dim $(V_{ab}^{c}) = N_{ab}^{c}$

* F-symbols (associator):

$$\mathsf{F}^{\,\mathsf{d}}_{\mathsf{abc}}: \quad \underset{\mathsf{e}}{\oplus} \,\, \mathsf{V}^{\,\mathsf{e}}_{\mathsf{ab}} \otimes \mathsf{V}^{\,\mathsf{cd}}_{\mathsf{e}} \xrightarrow{\sim} \,\, \underset{\mathsf{f}}{\oplus} \,\, \mathsf{V}^{\,\mathsf{d}}_{\mathsf{af}} \otimes \mathsf{V}^{\,\mathsf{f}}_{\mathsf{bc}}$$



Application 1: Anyon chains

* One-dimensional lattice model:



* Dynamics: Nearest-neighbor interaction

Projection onto a simple object
$$e: P^{(e)} = e$$

$$P_{i}^{(e)} = \left(F_{X_{i+\Lambda}}^{X_{i-\Lambda}} a a\right)_{e \times i}^{e} \left(F_{X_{i+\Lambda}}^{X_{i-\Lambda}} a a\right)_{x_{i}'}^{t} e$$

* Investigate phase transitions -> conformal field theories?

Application 2: Levin-Wen model

* Two-dimensional lattice model:

- * Study of topological phases
- * Excitations of the model correspond to objects in the center of the category

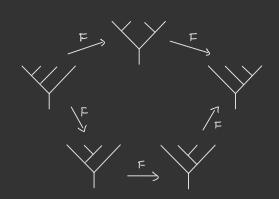
Both applications show:

We <u>need</u> explicit data of the fusion categories, in particular F-symbols

$$\begin{cases} a & b & c \\ = & \sum_{f} \left(\left(\left(\left(\left(\frac{abc}{d} \right) \right)_{ef} \right) \right) \right) \\ d & d \end{cases}$$

Challenges

Pentagon equation:



with multiplicities:

$$\sum_{\delta} \left(F_{e}^{fcd} \right)_{\left(\beta_{1}, g, \chi \right) \left(\delta_{1} l_{1} \nu \right)} \left(F_{e}^{abl} \right)_{\left(\alpha_{1}, f_{1} \delta \right) \left(\lambda_{1}, k_{1} \mu \right)} \\
= \sum_{h_{1}, g_{1}, k_{1}, g} \left(F_{g}^{abc} \right)_{\left(\alpha_{1}, f_{1}, k \right) \left(\sigma_{1}, h_{1}, \psi \right)} \left(F_{e}^{ahd} \right)_{\left(\sigma_{1}, g, \chi \right) \left(\lambda_{1}, k_{1}, g \right)} \left(F_{k}^{bcd} \right)_{\left(\gamma_{1}, h_{1}, g \right) \left(\mu_{1}, l_{1} \nu \right)}$$

- * multivariate polynomial equations up to 3rd order
- * thousands of variables + equations

The idea

based on joint work with Daniel Barter and Jacob Bridgeman, SciPost Physics 13, 029 (2022)

* If e and M are unitary => en unitary

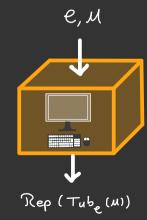


GOAL: Construct the category Rep (Tube (M)) and calculate F-symbols

Why is this better?

Rep (Tube (M)) has more structure

~> Compute F-symbols via solving linear equations



Tube algebra

Module category C ns M

* Associator:

a b m

$$(L_{\text{fcm}}^{n})_{gp} (L_{\alpha bp}^{n})_{fq} = \sum_{z} (E_{\alpha bc}^{g})_{fz} (L_{\alpha zm}^{n})_{gq} (L_{\beta cm}^{bcm})_{zp}$$

L> Only quadratic polynomials (if F-symbols of e are known)

Module tube category Tube (M)

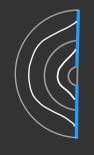
- * Simple objects: Ob (Tube(M)) = $\{(m,n) \mid m,n \in Ob(M)\}$
- * Morphisms: $Hom_{Tub_{e}(\mu)}((m,n),(p,q))$ "half tubes";

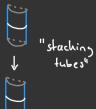
basis:

$$\Lambda = \left\{ \begin{array}{c} x \in \mathbb{R}^{n} \\ x \in \mathbb{R$$

Composition:

tube algebra





tensor product:

The algorithm

Step 1: Construct irreducible representations of the module tube algebra

*
$$\mathcal{M}$$
 irreducible => $\mathsf{Tub}_{e}(\mathcal{M}) \cong \bigoplus_{\kappa=1}^{n} \underbrace{\mathsf{Mat}(D_{\kappa})}_{=D_{\kappa} \times D_{\kappa} - \mathsf{matrix}}$ algebra over C

* Convenient to find matrix unit basis:

 χ and express them in terms of tube diagrams; $\left[e_{\kappa}\right]_{ij} = \sum_{P \in \Lambda} c_{p}^{\kappa} P$

x irreducible representation: Vector space + action

Natural choice: Algebra acts on itself

> irep: vector space Va with basis [v,]; = [ex]io

= x i

Step 2: Compute fusion rules

* Construct basis for tensor product space

$$\alpha, \beta \in Ob(e_{\mu}^{*}): \alpha \& \beta = \beta$$

$$\longrightarrow [v_{\alpha}]; \otimes [v_{\beta}]; = \mathcal{E} ...$$
objects have to match here

* decompose into irreps:

dim (a⊗B) ≤ dim x · dim B

Project onto
$$\gamma$$
 using $1/\gamma = \sum_{i} [e_{\gamma}]_{i}$
 $N_{\alpha\beta}^{\gamma} = \text{dimension spanned by such projected vectors}$

Step 3: Compute embedding matices

* Map that embeds
$$y$$
 into $x \otimes \beta$: $V_{\alpha\beta}^{x \mid x} := \int_{\alpha}^{x} \frac{x}{x} y$

$$= dir_{\alpha}(x \otimes \beta) \times dir_{\gamma} = dir_{\alpha}(x \otimes \beta) \times dir_{$$

* Reshape into 3-tensor of size (dima, dim s; dim x)

Step 4: Compute F-symbols

linear equation

Compare pertajon equation:

Summary:

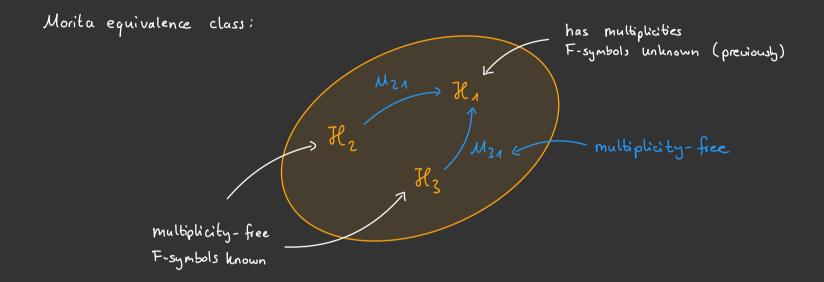
- 1. Find irreducible representations of the tube algebra Tube (M)

 L. Simple objects
- 2. Compute the decomposition of the tensor product of all irrep pairs

 Ly Fusion rules
- 3. Form explicit matrices for embeddings, reshape into 3-tensors
- 4. Solve linear equations to compute F-symbols

Applications

Application: Haugerup Categories



$$\hookrightarrow$$
 construct $\operatorname{Rep}\left(\operatorname{Tub}_{\mathcal{H}_3}(M_{34})\right) \equiv \mathcal{H}_A$

Example

$$\frac{\text{Example}}{\text{Example}}$$
 Vec $(\mathbb{Z}/2\mathbb{Z})^*_{\text{Vec}} = \text{Rep}(\mathbb{Z}/2\mathbb{Z})$

*
$$Vec(\mathbb{Z}/2\mathbb{Z})$$
: $Obj = \{0, 1\}$

$$d_0 = d_1 = 1$$

$$a \otimes b = a + b \mod 2$$

$$all F-symbols = 1 \text{ when allowed}$$

* Module category Vec: Obj =
$$\{*\}$$

$$d_* = \sqrt{2}$$
all L-symbols = 1 when allowed

$$\frac{\text{Example}}{\text{Example}}$$
 $\text{Vec}(\mathbb{Z}/2\mathbb{Z})^*_{\text{Vec}} = \text{Rep}(\mathbb{Z}/2\mathbb{Z})$

Step 1: Find irreducible representations of Tub Vec (2/22) (Vec)

Matrix units:
$$[e_{\lambda}]_{00} = \frac{1}{2} (T_0 + T_{\lambda}) = \frac{1}{2} (T_0 + T_{\lambda})$$

 $[e_{\gamma}]_{00} = \frac{1}{2} (T_0 - T_{\lambda}) = \frac{1}{2} (T_0 - T_{\lambda})$

Step 2: Compute Fusion rules

$$\underline{\text{Example}}$$
Vec $(\mathbb{Z}/2\mathbb{Z})^*_{\text{Vec}} = \text{Rep}(\mathbb{Z}/2\mathbb{Z})$

Step 2: Compute Fusion rules

Example: Project V into 10 4.

$$= [V_{\lambda}] \otimes [V_{\psi}] \Rightarrow \lambda \otimes \psi = \psi \qquad \psi \otimes \lambda = 1$$

Rep (7/27)

$$\frac{\text{Example}}{\text{Example}}$$
 $\text{Vec}(\mathbb{Z}/2\mathbb{Z})^*_{\text{Vec}} = \text{Rep}(\mathbb{Z}/2\mathbb{Z})$

Step 3: Compute embedding matrices

$$\bigvee_{\alpha \beta}^{\alpha \beta} := \bigvee_{\alpha}^{x} x$$

Example:
$$V_{17}^{\psi} = V_{1}^{\psi}$$
 (1-dim.)

Choose a general vector
$$W \in 1 \& \Psi : W = C \cdot [V_{\lambda}] \otimes [V_{\Psi}]$$

$$[e_{\Psi}] (C \cdot [V_{\lambda}] \otimes [V_{\Psi}]) = C \cdot [V_{\lambda}] \otimes V_{\Psi}]$$

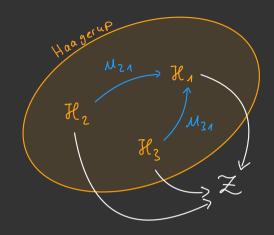
=>
$$V_{114}^{14} = (\omega_{114}^{14}) \cdot 2^{1/4}$$
 (isometry)

$$\underline{\text{Example}}$$
 Vec $(\mathbb{Z}/2\mathbb{Z})^*_{\text{Vec}} = \text{Rep}(\mathbb{Z}/2\mathbb{Z})$

Step 4: Compute F-symbols

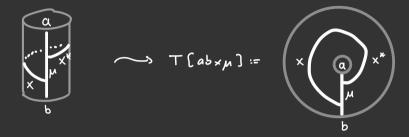
We can set all parameters
$$w_{\alpha\beta}^{\gamma} = 1$$
.

Rep (Z/2Z)

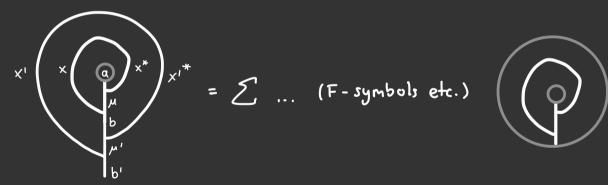


The center

Full tubes:



Composition: Put one tube around the other



=> We have an algebra, so we can do step 1 from the algorithm:

Calculate its irreducible representations to get the simple objects of the center

Step 2: Calculate fusion rules

-> we need a basis for the tensor product space

Tensor product of two tubes:

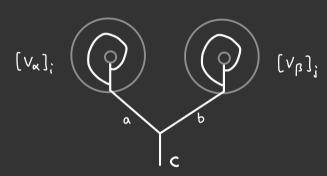
Option 1

Tensur product of two irreps: basis of the space is formed by

$$\{ [v_{\alpha}]_{i} \otimes [v_{\beta}]_{j} : [v_{\alpha}]_{i} - \text{basis of imp } \alpha,$$
 $[v_{\beta}]_{j} - \text{basis of imp } \beta \}$

=> dim (x @ B) = dim x · dim B

Option 2



Tensur product of two irreps: basis of the space is formed by

=> dim (x @ B) > dim x. dim B

How to get fusion rules, e.g. $\alpha \otimes \beta = \emptyset$ Recall: $[e_{\delta}]_{00} ([v_{\alpha}]_{i} \otimes [v_{\beta}]_{j})$ $\sum_{i=1}^{\infty} Compose these!} = \sum_{i=1}^{\infty} Compose these the$

embedding of & into & & B

What we got: Correct fusion rules for the center of

* Fibonacci

* Vec Z2

* Vec S3

Haagerup? Can't solve it on a laptop...

Step 3: Compute embedding matices

* Map that embeds
$$y$$
 into $x \otimes \beta$: $V_{\alpha\beta}^{\gamma \gamma} := \int_{\alpha}^{\gamma} x din y$ matrix

* choose WEXBB

$$[e_{\chi}]_{00} \omega =: \bigvee_{\delta}^{\delta} \bigvee_{\chi}^{\chi} = [e_{\chi}]_{\lambda_{0}} \bigvee_{\delta}^{\delta}$$

$$\lim_{\delta \to \infty} (\alpha \otimes \beta) \left\{ (e_{\chi})_{00} (\alpha \otimes \beta) \right\} = \bigvee_{\chi}^{\chi} (e_{\chi})_{00} (\alpha \otimes \beta)$$

$$V_0^{\chi} = \sum_i C_i \left[V_{\alpha \otimes \beta} \right]_i \longrightarrow \text{only works if we treat}$$
 each of those vectors as an individual summand

** Reshape into 3-tensor of size (dima, dim B; dim 8) does not work if dima. dim B

$$\beta = \sum_{k_{i}v_{i}l} \left(F_{\alpha\beta\gamma}^{\delta} \right)_{(i,\mu,j)} \left(u_{i}v_{i}l \right)$$

$$\beta = \sum_{k_{i}v_{i}l} \left(F_{\alpha\beta\gamma}^{\delta} \right)_{(i,\mu,j)} \left(u_{i}v_{i}l \right)$$

$$\beta = \sum_{k_{i}v_{i}l} \left(F_{\alpha\beta\gamma}^{\delta} \right)_{(i,\mu,j)} \left(u_{i}v_{i}l \right)$$

$$\gamma = \sum_{k_{i}v_{i}l} \left(F_{\alpha\beta\gamma}^{\delta} \right)_{(i,\mu,j)} \left(u_{i}v_{i}l \right)$$

$$\gamma = \sum_{k_{i}v_{i}l} \left(F_{\alpha\beta\gamma}^{\delta} \right)_{(i,\mu,j)} \left(u_{i}v_{i}l \right)$$

$$\gamma = \sum_{k_{i}v_{i}l} \left(F_{\alpha\beta\gamma}^{\delta} \right)_{(i,\mu,j)} \left(u_{i}v_{i}l \right)$$

$$\gamma = \sum_{k_{i}v_{i}l} \left(F_{\alpha\beta\gamma}^{\delta} \right)_{(i,\mu,j)} \left(u_{i}v_{i}l \right)$$

$$\gamma = \sum_{k_{i}v_{i}l} \left(F_{\alpha\beta\gamma}^{\delta} \right)_{(i,\mu,j)} \left(u_{i}v_{i}l \right)$$

$$\gamma = \sum_{k_{i}v_{i}l} \left(F_{\alpha\beta\gamma}^{\delta} \right)_{(i,\mu,j)} \left(u_{i}v_{i}l \right)$$

Additional challenge: Computationally costly to compute embedding matrices